
 1

A Conceptual Framework for Network and Client Adaptation

B. Badrinath, Armando Fox, Leonard Kleinrock, Gerald Popek,

Peter Reiher, M. Satyanarayanan

Abstract

Modern networks are extremely complex, varying both statically and dynamically. This complexity and

dynamism are greatly increased when the network contains mobile elements. A number of researchers

have proposed solutions to these problems based on dynamic adaptation to changing network conditions

and application requirements. This paper summarizes the results of several such projects and extracts

several important general lessons learned about adapting data flows over difficult network conditions.

These lessons are then formulated into a conceptual framework that demonstrates how a few simple and

powerful ideas can describe a wide variety of different software adaptation systems. This paper

describes an Adaptation Framework in the context of the several successful adaptation systems and

suggests how the framework can help researchers think about the problems of adaptivity in networks.

1. Introduction

Computer networks are becoming increasingly complex and variable, with mobility exacerbating the

problem dramatically. Several researchers in the field of networking and distributed systems recognized

this problem in the recent past, and started designing solutions to the problems of complex variability.

Many of these researchers addressed the problem through different forms of software-supported

adaptivity. Recently, systems embodying their ideas have been built, tested, validated, and, in some

cases, deployed for production use, demonstrating the real power of software-supported adaptivity.

The authors examined the characteristics of the adaptive software systems they built and discovered that

although the systems were independently designed and built, they shared three kinds of commonality:

 2

1. The systems shared certain fundamental characteristics that could be described in fairly sim-

ple architectural terms.

2. The designers made similar design choices across the different systems.

3. Similar lessons were learned in the design and implementation of the different systems.

The framework presented in this paper captures these commonalities, clarifies several issues surround-

ing the structure and design of software that adapts to difficult network conditions, and suggests key

issues that require further investigation in this field. The framework can also help other researchers

characterize their own adaptive software and understand how it relates to other systems.

In section 2, we discuss in more detail the characteristics of modern networks that motivate the need for

adaptivity, especially in the mobile computing arena. Section 3 briefly describes some of the systems

that provided inspiration for the framework. Section 4 describes the framework. Section 5 presents how

each of the sample systems from section 3 fits into the framework. Section 6 suggests ways in which the

framework may help other researchers think about the structure of their own adaptive systems. Section

7 concludes with open issues that the framework exposes and suggests areas of future work.

2. The Need for Network Adaptation

Many of the characteristics of modern networks vary dramatically. Bandwidths currently provided by

networking hardware in daily use range from a few tens of kilobits per second up to thousands of

megabits per second. Similarly, bit error rates of commonly used network devices span orders of

magnitude. Latencies can range from nanoseconds to large fractions of a second. Networks that contain

mobile elements tend to experience a wide range of these characteristics, often with rapid changes.

The scale of today’s and tomorrow’s networks adds great complexity. High growth rates are expected

for the future, even leaving aside the additional scaling potential of “smart spaces”, where many billions

 3

of tiny embedded devices worldwide will have some networking capabilities. Such scale makes any

form of static planning or optimization of network operations impossible.

We also demand far more of our networks than ever before. Not only is the total volume of traffic

increasing at an alarming rate, but also new applications put new kinds of demands on the network.

Web browsing, video conferencing, and Internet telephony have very different network requirements

than such old Internet staple applications like electronic mail and file transfer.

Mobility greatly exacerbates the problem. Many of the computers being sold today are either portables

or handheld devices. In the smart spaces world of the future envisioned by some, extremely small

embedded devices will travel everywhere, be embedded in everything from walls to automobiles to

shoes, all the while communicating, processing, controlling, actuating, capturing data, etc. A

bewildering array of wireless networks is being deployed to serve such mobile devices.

The mobile environment also introduces another complication: heterogeneity in the communicating

devices. Cell phones, personal digital assistants, palmtop computers, digital pagers, digital cameras and

portable computers all have different capabilities and different requirements. Part of the difficulty of

adaptation in the mobile environment is not just to deliver data over challenging network conditions, but

to deliver it in formats suitable for the devices that need it.

Other issues, such as security and economic questions, also complicate the problem. Generally, adding

the need for security to any computing question complicates it. The existing networking infrastructure

that we have inherited was not designed with commercial use in mind; as a result, performing efficient,

safe business transactions over that network infrastructure is challenging.

Moreover, the existing network protocols that have enabled the Internet revolution are not perfectly

suited to the environment they themselves have created. TCP, for example, does not work well on noisy

 4

links (e.g., many wireless links), and often behaves poorly over satellite links due to long latencies.

Researchers have changed some protocols to handle such problems, but our understanding of networks

is insufficient to allow us to design protocols that behave well in the face of all probable network

conditions. Even if we could develop such protocols, we would face the challenge of converting the

enormous installed base of today’s network infrastructure. The Internet is distributed, decentralized and

vast, and the simple solution of complete replacement of that existing infrastructure is daunting.

But it is important to realize that even if we could successfully deploy new protocols quickly, problems

would still remain. The real goal of adaptive networking is to provide good end-to-end service, where

the end points are located in applications. Without considering the needs of applications and their users,

no adaptive solution at the network level alone can solve the entire problem.

These trends suggest that we must deal with larger, more variable, more complex, rapidly growing

networks that must meet ever increasing demands, yet rely largely on existing networks and protocols.

One general class of solutions to solving this problem is to allow various forms of adaptation of network

traffic. Such solutions allow hardware or software to alter the protocols or the data content being

transmitted to provide a better quality of service to users.

Data flows over networks can be usefully adapted in many ways:

• The underlying protocol can be altered to handle difficult conditions. The Berkeley snoop protocol

improves TCP over high error rate links [BSAK95]; an adaptation mechanism can slip the snoop

protocol into place when such links are established [AHKO97].

• The data can be altered in a lossless way. Various systems allow data compression or encryption

across links with poor connectivity, without any application involvement.

 5

• Lossy adaptations can be used to obtain better compression of data over limited links by dropping

inessential portions of the information, or sending a lower-fidelity version. TranSend improved

performance by an order of magnitude or better using lossy compression [FGCB98].

• Data can be automatically converted to formats better suited to the end systems or the intermediate

networks. The Top Gun Wingman browser [FGG+98] converts Web images into 2-bit grayscale

bitmap displays before sending them to Palm Pilots. Mowgli [LHKR96] converts GIF images to

more compact JPEG before sending them over wireless links. Although adaptation to client hetero-

geneity is an important area in which extensive work has been done (see [FGCB98] for an overview

and pointers to related work), in this paper we focus on adapting to network variability, remarking

that the architecture we describe has been successfully used to address client adaptation as well.

Adaptive solutions to network problems embrace many interesting variations: the various proxies built

at Berkeley [FGCB98], the Odyssey system [NSN+97], transformer tunnels [SB98], active networks

[TW96], and intelligent agents [TK96]. While these systems have some very significant differences, all

offer methods of changing the contents of the transmitted data or the methods used to send that data. All

adapt to changing conditions specific to the data transmission requested, or to prevailing network

conditions, or to needs of the users. This body of research has many successes, but none claim to solve

the complete problem or even to suggest a framework for thinking about the problem and its solution.

This paper’s goal is to propose such a framework.

3. Some Characteristic Adaptive Systems

Although at first glance there may appear to be little commonality across the wide variety of approaches

to network adaptation, significant commonality is revealed by closer examination of the decisions made

by independent researchers taking different approaches to the problem. We present below several

independently designed, operational systems developed by one or more of the authors. While the chosen

 6

systems certainly do not cover all work done in the field (or even all work in the field by the authors),

they illustrate the wide variety of possibilities in adaptive network software solutions. Each system’s

designers started from the assumption that adaptivity was required to solve some set of problems, but

otherwise the design assumptions varied radically. Examples of differences include the following:

• Application-transparent vs. application-aware adaptation: is the application informed that adaptation

is occurring and perhaps expected to provide an application-level response (as in Odyssey), or does

the system attempt to completely shield the application from this fact (as in Conductor)?

• General vs. application-specific adaptation: does the system provide general machinery to support a

collection of unrelated applications (as in disconnected file systems such as Coda), or does it support

a specific application or narrowly-defined class of applications (as is the case for TranSend)?

• Does the adaptation machinery reside in the client, in the server, in one or more intermediate

proxies, or all of these?

Despite such differing goals and assumptions, some key common ideas and themes emerged. We now

examine these example systems, which on the surface appear extremely different. Closer examination

of their conceptual architectures, however, reveals strong similarities, which we tie together with the

framework we describe in Section 4.

3.1 UC Berkeley TranSend

UC Berkeley’s TranSend Web accelerator proxy [FBA96] was one of the earliest projects to explore

adaptation proxies aggressively. TranSend intercepts HTTP requests from standard Web clients and

applies datatype-specific lossy compression when possible; for example, images can be scaled down or

downsampled in the frequency domain, long HTML pages can be broken up into a series of short pages,

 7

etc. TranSend’s primary goal was to provide network adaptation for users of slow links, such as UC

Berkeley’s modems or the Metricom Ricochet service [Met94], which is popular in the Bay Area.

TranSend supports a wireless vertical handoff mechanism [SK97]. When a client equipped with

multiple wireless interfaces switches between wireless networks, the client-side vertical handoff

software (which is completely independent of TranSend) generates a notification packet containing

some essential characteristics (e.g., estimated expected throughput) of the new network. This packet

would be sent to a special UDP port on TranSend where the notification would be processed and stored

in a per-client profile. TranSend would then process future requests from that client in accordance with

the new network type; for example, very aggressive image downsampling was performed for clients

connecting over Ricochet with an expected throughput of 15-25 Kb/s, whereas compression was much

less aggressive (and in some cases disabled) for WaveLAN clients connecting at about 1 Mb/s.

Because HTTP is a “stackable” protocol (i.e. it is possible to have several HTTP “hops” in a request

chain), TranSend-based adaptations are naturally composable, allowing a multilevel system with some

“baseline” compression performed far upstream, and additional compression performed near the clients.

TranSend evolved into a general system for deploying scalable, fault-tolerant adaptive applications

[FGCB98]. Top Gun Wingman [FGG+98], for example, allows users of thin clients such as the USR

PalmPilot handheld device to browse the Web. Although similar in spirit to TranSend, Wingman

provides an additional service, a network adapter. TranSend uses HTTP to communicate with clients

and servers, but the PalmPilot’s modest capabilities suggested a simpler protocol. A simple datagram-

based client-to-adapter protocol that also encapsulates security and encryption was crafted for Wingman.

Wingman’s proxy-side adapter translates between this protocol and HTTP, giving Wingman the ability

to access existing Web servers. When Wingman was evolved into a PalmPilot implementation of the

shared whiteboard [CFMB98], the network adapter was augmented to tunnel multicast to the PalmPilot

 8

over a unicast TCP connection, to compensate for the PalmPilot’s inability to handle multicast directly;

this is another example of network adaptation.

3.2 CMU Odyssey

Odyssey is a system built at Carnegie Mellon University to support challenging network applications on

portable computers [NSN+97]. Odyssey particularly focuses on resource management for multiple

applications running on the same machine. Odyssey was designed primarily to run in wireless

environments characterized by changing and frequently limited bandwidth, but the model is sufficiently

general to handle many other kinds of challenging resource management issues, such as battery power or

cache space. The goal of the system is to provide all applications on the portable machine with the best

quality of service consistent with available resources and the needs of other applications.

Odyssey is an application-aware approach to adaptation intended primarily to assist client/server

interactions. The Odyssey system consists of a viceroy, an operating system entity in charge of

managing the limited resources for multiple processes; a set of data type-specific wardens that handle

the intercommunications between clients and servers; and applications that negotiate with Odyssey to

receive the best level of service available. Applications request the resources they need from Odyssey,

specifying a window of tolerance required to operate in a desired manner. If resources within that

window are currently available, the request is granted and the client application is connected to its server

through the appropriate warden for the data type to be transmitted. Wardens can handle issues like

caching or pre-fetching in manners specific to their data type to make best use of the available resource.

If resources within the requested window are not available, then the application is notified and can

request a lower window of tolerance and corresponding level of service. As conditions change and

previously satisfied requests can no longer be met (or, more happily, conditions improve dramatically),

 9

the viceroy uses upcalls registered by the applications to notify them that they must operate in a different

window of tolerance, possibly causing them to alter their behavior.

3.3 UCLA Conductor

The UCLA Conductor system allows deployment of cooperating adaptive agents at specially enabled

nodes throughout a network [YRP99]. Conductor is an application-transparent adaptation mechanism.

Applications can benefit from Conductor without being recoded or explicitly requesting its services.

Instead, the underlying system is configured to indicate what kinds of data flows Conductor is capable

of assisting and the Conductor system automatically traps and adapts those data flows.

Conductor also handles issues of composing adaptations in support of a single flow at multiple nodes.

Conductor determines the characteristics of the data path from source to destination and determines if

the path will meet the needs of the applications using it. If not, Conductor will automatically deploy

adapters at one or several of the available nodes along the path to adapt the data flow to network

conditions, allowing better application-visible network behavior. Conductor plans the cooperative

behavior of the agents and handles problems of transient or long-term failure of particular adapter nodes.

Conductor is designed to handle general-purpose adaptations, including both lossy and lossless

adaptations. Combining lossy adaptations and reliability is especially challenging, since a lossy adapter

may drop part of the data or may transform several data packets into fewer packets. If an adapter or its

node fails, some of the adapted packets could be delivered while others were not. Without the lossy

adapter’s state to determine which original packets were dropped or coalesced, the system may find it

difficult to resume transmission without either duplicating already received information or failing to

deliver required information. Unaware applications are generally unprepared for either problem, so

Conductor must hide these problems from such applications. Conductor attaches numbers to pieces of

semantic content that do not vary when adapted. For example, if every other packet is dropped, the

 10

undropped packets are renumbered to include the dropped packets. The system is thus able to determine

which information has and has not been delivered despite failures.

3.4 UCLA Smiley

Smiley is an intelligent agent real-time program developed at UCLA to augment Web browsers [JK99].

It has two components: (i) a dynamic Graphical User Interface that informs users of the nature of the

links on a Web page, and (ii) a transparent agent that prefetches carefully selected links. The GUI

provides users a measure of the quality of connectivity available between themselves and the servers

they contact to obtain Web pages [JK99], and of the nature of the data residing behind that link. It was

designed to handle both the kinds of limited links common in mobile computing and general connec-

tivity and bandwidth problems in the overall network. Smiley’s GUI provides user feedback, in the form

of augmentations to the links shown on a Web page, allowing the user to predict the likely effect of

clicking on a particular link. This feature allows a user to avoid requesting a page that is unavailable or

will take a long time to retrieve. Smiley prefetches web pages intelligently to allow users to browse

more effectively over limited and variable links. A prefetch threshold algorithm is used to decide when

to prefetch a web page the user hasn’t yet asked for. Smiley includes models that consider different

users associated with different time and bandwidth costs, trying to minimize the average cost for each

request in the entire system.

3.5 CMU Coda

Coda is an optimistic file replication system developed for the mobile computing environment that uses

client/server optimistic replication to maintain replicas of files required by disconnected or poorly

connected clients [KS92]. Optimistic replication permits any replica of a file to be updated freely (as

allowed by normal file system access permissions), without regard to the status of other replicas.

Optimistic replication provides great performance and availability advantages over other replication

 11

alternatives, at the cost of occasionally permitting concurrent updates. Experience with and measure-

ments of Coda [KS92] and other optimistic replication systems [RHR+94] shows that concurrent

updates are uncommon in practice, and many of them can be resolved without human intervention.

Coda’s server copy is kept on a well-connected machine that the portable computers contact when

possible. Updates performed by the portable computer during disconnection are saved in a log, which is

replayed to the server when possible. The server detects any concurrent updates and rejects them,

requiring the client to use automated conflict resolution mechanisms to resolve any problems resulting

from such concurrency [KS93, KS95]. The client portable also requests new updates from the server.

Adapting to network conditions was not the primary goal of Coda, but experience with its operation in

the mobile environment caused the Coda designers to extend it to do so [MES95]. Coda performs

trickle reintegration when only limited bandwidth is available for communicating updates to the server.

This method of reintegrating updates from the mobile computer to the server allows effective, adaptive

use of the available bandwidth between the two machines.

3.6 Rutgers Environment Aware API

Application adaptivity implies that applications must be structured to receive notifications about any

important changes in the environmental state and to react appropriately. Since the network state is

complex, the applications must interact with many environmental conditions, sources, and possible

reactions. The Rutgers Environment Aware API addresses this problem. This API is based on a flexible

mechanism for asynchronous event delivery. Environmental changes are modeled as asynchronous

events that are delivered to mobile computing applications over an entity called an Event Channel

[WEBA98]. This entity implements the event delivery mechanism. The events are organized as an

extensible type hierarchy, and the architecture itself can be configured and extended. This extensibility

enables support for a new condition to be easily incorporated into an existing system. A novel feature of

 12

the API is the ability to utilize event type information not only to filter out uninteresting events, but also

to handle an event at an appropriate level of abstraction. An application that chooses to be environmen-

tally aware creates a handler for that event type. The application specific response to the new situation is

encoded in this handler and is invoked when the appropriate event is delivered.

4. A Conceptual Framework for Network Adaptation: The Adaptation Framework

Careful thought about these and other network adaptive systems reveals important common themes. We

now present a conceptual framework that encapsulates those themes. Each of the systems presented

above maps well into this framework, despite their many different details.

The framework had to display certain characteristics:

• it should encompass all reasonable alternatives to major design questions

• it should be as simple as possible (but, to quote Einstein, no simpler)

• it should consider issues of incremental deployment of different technologies, interoperation with

legacy systems, and other practical issues

• it should make interoperation between different adaptation technologies easier

• it should distill the extensive knowledge, experience, and real systems produced for adaptation

• it should provide a starting point and common vocabulary for describing future work in the

important area of adaptive architectures

• it should not preclude future innovations that provide alternative approaches to adaptive networks

Data flowing across an arbitrarily large and complex network of varying characteristics should be

delivered to its destination in the best manner possible, given a variety of constraints. Some of these

constraints relate to physical and technological limitations, such as the speed of light or the capacity of a

 13

link on the path. Others relate to systems concerns, such as the need to share a link or the costs of

providing reliable delivery. Given the wide variety of possible conditions that could be present in the

network, many different adaptations to the data flow could prove beneficial.

The essence of the problem is illustrated in Figure 1. A process on a source node sends data to a process

on a destination node. The data flows across various links and nodes in the network. The thickness of

the connecting lines is meant to suggest relative capabilities of the links involved in the data flow.

S D

Source Destination
Figure 1: A data flow in a variable network

To some extent, this figure is a simplification of the general problem. It shows a simple data flow with

a single source (S) and destination (D), and it does not illustrate problems such as delivery deadlines or

security concerns, nor does it suggest the level of complexity possible in even a single network data

flow. But the figure captures the heart of the problem. A stream of data flows from a source to a

destination across a network, using links of varying capabilities. At some or all points in the network,

altering the data flow in various ways could lead to better overall results, from the point of view of the

sender, the receiver, the administrator of the network, or the complete population of network users.

Without some mechanism to apply such adaptations, however, no improvements can be made.

Figure 2 shows how the introduction of adapters alters the situation. Now, the data can be altered in

various ways, allowing for better results. Adaptation Agencies (labeled AA in the figure) represent

many different kinds of adaptation mechanisms, from adaptive protocols to heavyweight code executed

on behalf of the data flow. Note that all adaptive components in this diagram are optional, and that any

 14

single AA can be replaced with multiple AA’s arranged in complex ways. The degenerate case where all

are omitted is a simple client-server or peer system with no adaptivity support.

AA AA AAAAS D

Figure 2: Adapters assist the data flow

Figure 3 shows how the Adaptation Framework fills in the details of Adaptation Agencies. An AA

consists of several parts:

Figure 3: An Adaptation Agency

• The Event Manager (EM) monitors the AA’s environment. The components of that environment are

defined broadly, for generality, but are likely to include things like traffic and error conditions on

network links, available CPU cycles on a local processor, or security threats that have been detected.

The event manager can receive control messages that will alter the behavior of the AA. These

messages can originate from other AA’s, from local operating system services, or from applications.

• The Resource Management and Monitor (RM) component handles resources under direct control of

the AA. If the AA has been allocated a certain percentage of a data link’s bandwidth, the RM

determines how to best use that bandwidth to meet the needs of all data flows under its control.

Data

Rsrc Mgt &
Mon (RM)Evt Mgr

(EM)

App-Specific
Adapter (ASA)

Network (unicast,
mcast, bcast, geocast)World DataData

AA boundary

“I want...”

“You get...”

Network API

 15

• Each AA may contain zero or more Application Specific Adapters (ASA’s). These modules are

capable of performing some particular adaptation on a data stream. Each ASA requires certain

resources to perform its adaptation properly.

An Adaptation Agency accepts data from some source and delivers possibly adapted data to some other

destination. The source may be one network link and the destination another network link, but source

and destination might also be other AA’s. If a particular AA is working directly with a network,

however, it will have some knowledge of the specifics of that network, such as whether the network

supports broadcast or not. The AA can use this knowledge when performing adaptations.

RM

EM

ASA Network

AA boundary

1.

2.
3.

4.

5.

6.

RM

EM

ASAASA Network

AA boundary

1.

2.
3.

4.

5.

6.

The connection and interaction of AA components is also important. (See figure 4.) Generally, data

comes into an AA and is delivered to one of its ASA’s (1), which decides whether to adapt the data. If

resources are required for an adaptation, the ASA requests them from the RM (2). The RM can accept

or reject such a request, based on what resources are available and its resource allocation algorithms.

The RM obtains the availability information from the EM (3), which sends the RM updates whenever

significant events occur. When the RM has decided on how to handle a request from an ASA, it informs

the EM of the new resources that have been made available to the ASA (4). The EM can then alter its

Figure 4: Data Flow Through an AA

 16

view of local conditions, and can also deliver the response to the ASA (5). The EM will also signal the

ASA when other situations lead to changes in conditions relevant to ASA operations. After adaptation,

the ASA passes the adapted data into the network for delivery to the destination or the next ASA (6).

AA’s can be organized hierarchically, with one AA controlling a group of other AA’s, allowing the

framework to specify that one entity control a shared resource for several other entities. Figure 5

demonstrates this concept. Two disjoint data flows pass through a single physical entity, which could be

a gateway machine, a network link, or an entire local area network. The data flows must in some way

share the physical entity’s resources. The adaptation framework handles this issue by permitting a

higher level AA to assume control of all of the physical entity’s shared resource. It then communicates

with the Event Managers of the AA’s actually supporting the two data flows to tell them how much of

the shared resource is available to them. These lower level AA’s in turn communicate internally with

the ASA modules chosen to use for adaptation of each data flow. The hierarchy can continue to higher

levels, if necessary, allowing one set of AA’s to handle data flows, a higher level set to mediate shared

use of a switch or gateway, and an even higher level AA to coordinate overall network activity through

its instructions to the middle level AA’s.

EM RM

Physical Collocation boundary

EM RM EM RM

EM RM EM RM EM RM

EM RM

Figure 5: Adaptation Agencies using a shared resource

 17

5. Mapping Real Systems Into the Adaptation Framework

The Adaptation Framework is intended to encompass a wide variety of adaptation mechanisms. Here

we describe how the systems described in section 3 can be fit into this framework. For each system, the

accompanying diagram shows as shaded the sections of a single ASA (or, in some cases, multiple

ASA’s) that are provided by that system.

5.1 TranSend

TranSend can be thought of as a complete Adaptation Agency (AA) that initially ran on a single

workstation but was later extended to run on a cluster. The entire cluster can be regarded as a single

AA that serves extremely large communities of users [FGC+97]. Within the AA, TranSend contains a

separate ASA for each MIME type (GIF, JPEG, HTML, etc.) Incoming data is either passed to the

appropriate ASA by type, or passed directly through the AA to the client if no appropriate ASA exists.

The ASA then performs datatype-specific lossy compression before forwarding the data.

Figure 6: Mapping TranSend to the Adaptation Framework

Transend’s vertical handoff mechanism worked with a simple Event Manager (EM) to determine when

handoff was necessary. Because TranSend was designed under the assumption that it would have use of

Vertical
Handoff

EM

HTML ASA

JPEG ASA

GIF ASA

Network

AA boundary

RMVertical
Handoff

EM

HTML ASA

JPEG ASA

GIF ASA

Network

AA boundary

RM
Vertical
Handoff

EM

HTML ASA

JPEG ASA

GIF ASA

Network

AA boundary

RMVertical
Handoff

EM

HTML ASA

JPEG ASA

GIF ASA

Network

AA boundary

RM

 18

all the workstation’s resources, no RM was designed into it. However, external RM schemes such as

SRI’s Resource Management framework should be able to interoperate with TranSend.

5.2 Odyssey

Odyssey fits well into the adaptation framework. Odyssey on a portable node is a single AA. The

viceroy is a combination of resource manager and event manager. The wardens are ASA’s specific to

individual data types. One Odyssey AA can host several warden ASA’s.

One interesting aspect of Odyssey with regard to the adaptation framework is that much of the

adaptation in this model is actually done by the applications, which interact with Odyssey. For example,

Odyssey itself doesn’t decide that color video frames should be converted to black-and-white, but rather

instructs the application that some action is required. The application itself decides how adaptation

should occur, and typically instructs its server to make the adjustment. Alternately, the application can

request even higher-level control, such as requesting user advice on the kinds of adaptations that should

be applied when conditions change. This aspect highlights the architecture’s inclusion of the possibility

of control traffic between applications and AA’s.

Viceroy
RM

EM

HTML Warden

Audio Warden

Video Warden
ASA

Network

AA boundary

Viceroy
RM

EM

HTML Warden

Audio Warden

Video Warden
ASA

Network

AA boundary

Figure 7: Mapping Odyssey to the Adaptation Framework

 19

5.3 Conductor

Conductor can be regarded as a set of complete AA’s that cooperate to plan and regulate the overall

behavior of a connection. Each Conductor node hosts an AA that will allow adaptation of multiple

flows through that node. The Conductor AA contains a RM that allocates the resources the node makes

available to Conductor between the different flows the local Conductor AA controls. It has an EM that

captures new data transmissions coming in or originating at the node, monitors the progress of data

flows, and watches for control information sent by other Conductor AA’s. Multiple ASA’s can be run at

a given Conductor node, either composed for the benefit of a single data flow, or separate for the benefit

of multiple independent data flows. The Conductor architecture also permits independent data flows to

share an ASA, such as a caching or prefetching adapter.

Conductor sends information between its AA’s to assist in planning the deployment of agents and to

watch for failures. This information is processed in a distributed fashion. Essentially, the AA’s

cooperate to create a plan at the start of a data flow. This plan indicates which ASA’s should be located

at given nodes, and may suggest how each ASA should behave. If connections fail, the nodes involved

in a flow on either side of the failure can replan to handle the failure. They can choose to shut down the

flow, re-route the flow (requiring, in general, a new plan and new ASA’s), or perform some local actions

in anticipation that the failure will be fixed shortly. An example of the latter would be prefetching data

from the source while waiting for a transient connection to reappear.

Figure 8: Mapping Conductor to the Adaptation Framework

 20

5.4 Smiley

Smiley can be regarded as a special purpose AA that resides on a mobile node, supporting a single

adaptation. It contains an RM that worries about the available link bandwidth, an EM that sends out

probes to the network to determine connectivity and latency information, and prefetching and page

rewriting ASA’s. Smiley is an example of an AA that maps tightly to a particular application.

Figure 9: Mapping Smiley to the Adaptation Framework

5.5 Coda

Coda shows how the framework can incorporate application and system software with adaptive

components. Coda’s trickle reintegration suggests an AA at the client side that uses an event manager to

monitor the available bandwidth. The Coda cache manager, Venus, combines the ASA, EM, and RM

functions. Venus acts like an ASA to select updates to reintegrate with the server replica and feed them

across the limited bandwidth link. Venus also performs EM functions to watch the link and RM

functions to handle usage of the link.

RM

EM

Network

AA boundary

Prefetching
ASA

Page Rewriting
ASA

RM

EM

Network

AA boundary

Prefetching
ASA

Page Rewriting
ASA

 21

Figure 10: Mapping Coda to the Adaptation Framework

5.6 The Rutgers Environment Aware API

The monitoring and delivery of events over the event channel in the Rutgers approach is an example of

the EM in the architecture. The EM monitors the environment and also delivers events of interest

according to a system-defined policy. The event handler also provides a framework for implementing an

ASA. The application can install separate ASA’s for each interesting event type. When the EM delivers

a notification, the appropriate ASA is invoked. The ASA responds to the new situation appropriately for

its application. For example, when a new network is detected, the characteristics of the network such as

expected bandwidth are encapsulated in the event. The ASA can use this information in its response by

changing the transmission from rich data to summary data and vice versa.

RM

EM

ASA Network

AA boundary

RM

EM

ASAASA Network

AA boundary

Figure 11: Mapping the Rutgers Environment Aware API to the Adaptation
Framework

RM
EM

ASA Network

RM
EM

ASA Network

Coda Client Trickle
Reintegration AA

Venus AA

RM
EM

ASA Network

RM
EM

ASAASA Network

Coda Client Trickle
Reintegration AA

Venus AA

 22

5.7 Commercial Systems

The research projects discussed in this article have already influenced commercial efforts. The network

adaptation ideas pioneered in TranSend have appeared in various commercial products including Intel

QuickWeb. The more aggressive adaptation pioneered in the Top Gun Wingman handheld Web

browser has been commercialized by ProxiNet, Inc. (now a division of Puma Technology). Emerging

mobile-computing standards from the W3C (World Wide Web consortium), including XML (Extensible

Markup Language) and XHTML (Extensible HTML), incorporate mechanisms for “hinting” to

intermediate Adaptation Agents to help them adapt content delivery to a range of networks and devices.

The WAP (Wireless Application Protocol) suite is a stack of protocols designed specifically for

delivering data and interactive services to the “smart cellular phone” class of mobile devices [WAP97].

Although the application-level markup and scripting languages (WML and WMLscript) include features

motivated by the limited capabilities of the intended client devices, the languages do not appear to

provide any functionality that directly facilitates the application-level adaptation we motivate in this

retrospective. It will be interesting to see whether the evolution of the WAP protocols will follow the

pattern of HTML, where application-level adaptation machinery has to be retrofitted after the protocols

have become entrenched.

 23

5.8 Summary

The following table summarizes how each of the example systems fits the Adaptation Framework.

System Description ASA EM RM Network

TranSend Web accelera-
tion through
datatype-
specific lossy
compression

MIME-type-
specific com-
pressors

Wireless verti-
cal handoff noti-
fication affects
compression
aggressiveness

N/A Compos-
able/stackable us-
ing HTTP

Odyssey Application-
aware adaptation
by multiple ap-
plications using
diverse data
types

Wardens (de-
vice driver-like
OS extensions)

Log of passive
bandwidth ob-
servations

Viceroy Runs on arbitrary
networks. API
expressive enough
to handle re-
sources such as
power and cache
space.

Conductor Combines adap-
tations across a
network for a
data flow

Supports arbi-
trary adapta-
tions

Monitors net-
work conditions
and notifies RM
of changes.

Handles
planning
and re-
planning of
adapter de-
ployment

Uses TCP from
point-to-point,
provides end-to-
end reliability it-
self.

Smiley Web prefetching
matched to net-
work conditions

Prefetching
and web page
rewriting.

Probes remote
Web servers to
determine cur-
rent network
conditions

Handles lo-
cal link and
cache

Runs on arbitrary
networks

Coda Trickle re-
integration
matches log re-
play to channel
characteristics

Decides what
and how much
to send and
keeps track of
incomplete
transmissions

Observes avail-
able link band-
width to server

N/A Specifics other
than bandwidth
and latency are
transparent to
Coda

Environment
Aware API

Management of
environmental
change and ap-
plication level
reaction

Event handler
which encodes
the response of
the application

Framework for
monitoring the
status if the en-
vironment and
delivering the
induced changes
to applications

N/A Not specific to
network attributes.
Supports other
considerations
such as power.

 24

6. The Adaptation Framework and the Structure of Adaptive Applications

Our framework distinguishes the functionality of specific components of an adaptive application, and we

have argued that this decomposition captures a broad class of adaptive applications. This decomposition

also provides the ability to decouple the various adaptation-related entities from each other. Certainly in

some cases tight coupling between entities can lead to a more efficient implementation; for example,

responding to an event by invoking a registered upcall is fast and efficient and may not even cross an

address-space protection boundary. However, in cases where loose coupling provides acceptable

performance and sufficiently small overhead, it offers some important benefits:

1. It allows applications to be designed to function in either adaptive or non-adaptive environments,

depending on whether environmental monitoring information is available. This simplifies appli-

cation development by avoiding the need for “hardwiring” the monitoring machinery directly

into the application.

2. It allows the components to be designed as separate autonomous subsystems that are loosely

coupled and operate essentially independently. For example, using multicast, an environment-

monitoring subsystem can be in a continuous-monitoring mode in which interested parties sub-

scribe to specific types of environment-change events and react to them, rather than using a

tighter coupling (such as the registering of upcalls) to support dynamic adaptation.

3. The third advantage derives directly from the first two: systems composed of autonomous,

loosely-coupled modules are more robust, generally less susceptible to cascading failure (be-

cause of the inherent fault isolation afforded by module autonomy), easier to maintain, and often

easier to deploy incrementally than their more tightly coupled counterparts.

For example, some applications in our framework do not require the presence or functionality of the

EM; they function correctly without it, but display better adaptive behavior when it is functioning. The

 25

TranSend application goes a step further by decoupling the mechanisms used for communication

between the EM and the ASA’s: in TranSend, the EM is a separate process that multicasts network-

change events on a well-known multicast channel. The EM can function without TranSend (it doesn’t

matter that no one is listening to a multicast transmission) and vice versa (if no events are received,

TranSend continues to function with its current settings). Such techniques contributed to the “infrastruc-

ture-level” degree of robustness achieved in the scalable cluster-based server that hosted the second-

generation TranSend prototype [FGC+97]. The decoupling made possible by a careful implementation

of our framework may be a worthwhile starting point for the design of future adaptive applications. We

consider it a strength of our framework that it accommodates both loosely-coupled and tightly-coupled

implementations, as circumstances and needs may require.

7. Open Issues and Conclusions

This framework is merely a starting point for thinking about the general characteristics of software that

supports network adaptivity. Many important issues are clarified, but not solved, by this framework.

7.1 The Adaptation Framework and Active Networks

Active Networks [TW96] defines a very general model for programming the network. In its full

generality, potentially every network packet can carry code, and every network entity (including routers

and general computation nodes) can execute that code and maintain state. In addition to network

adaptation such as we have described, ANs attempt to address a wide range of other tasks involving

computation in the network, such as packet filtering, encryption, and incremental protocol deployment.

Currently, the exact definition and architecture of Active Networks are topics of research. In many

cases, however, ongoing Active Network projects are producing software that is likely to fit well into the

framework. As the research community defines the architectural components of an Active Network

more precisely, we anticipate that architecture will map comfortably into the framework outlined here.

 26

7.2 Interactions between adaptations at different levels.

Adaptation can occur at multiple levels, as it does in the sample systems discussed. Some adaptations

relate to altering the behavior of an underlying protocol, some to altering the behavior of an operating

system, some to altering the behavior of an application. In some cases, different adaptations might be

applied at different levels of the overall system. How such adaptations would interact is far from clear.

Similarly, the framework points out the possibilities of composing adaptations, even those at the same

level. Some systems, such as TranSend and Conductor, already support some forms of composition, but

the framework points out many possible methods of composing adaptations. However, the methods

used to determine that composed adaptations produce the desired behavior, particularly when they are

being deployed and composed automatically, are unknown.

7.3 Breadth of applicability.

While this framework more than adequately describes the systems developed by the authors, and other

systems with which they are familiar, the model is new, and has followed the development of these

adaptive systems rather than preceded them. Whether the framework contains sufficient generality and

features to properly describe all worthwhile adaptive software systems remains to be seen. Further

examination of the alternative methods being used throughout the research community and deeper

thought may further refine the framework.

The framework, as it stands, is not an architecture. No APIs have been defined that describe how data

and control information flows into and out of AAs and their components. While the individual systems

discussed above all map neatly into the framework, none of them could be seamlessly and effortlessly

connected, as presumably they could be if they conformed to a single architecture. Conversion of the

framework into a true architecture would require tight specification of the APIs between its components

and validation by re-writing several adaptive systems to conform to these specifications.

 27

The OSI seven-layer reference model provides a useful analogy to our framework. Like our model, the

OSI reference model is not an architecture but a framework. The OSI model proposed a tremendously

useful way to think about networking protocols. It allowed the community to discuss key issues and to

define specific architectures. It provided a decomposition and layered structure that accelerated

implementation considerably. Many systems violate the OSI model, but those very violations are all the

more understandable and valuable precisely because we can place them in the context of a framework.

We believe that the adaptation framework outlined here can serve a similar role in the increasingly

important field of network adaptation.

The framework outlined in this paper is primarily intended to distill the common lessons learned from

several successful network adaptation systems. The authors hope it will lead to more general discussion

and study of the properties of network adaptation systems and the important features of such systems.

References
[AHKO97] Mark Allman, Chris Hayes, Hans Kruse, Shawn Ostermann, “TCP Performance Over Satellite

Links,” 5th International Conference on Telecommunications Systems, 1997.

[BHAK95] Hari Balakrishnan, Srinivasan Seshan, Elan Amir, and Randy Katz, “Improving TCP/IP Performance

Over Wireless Networks,” Mobicom 95, Nov. 1995

 [BMMM95] Charles Brooks, Murray S. Mazer, Scott Meeks, and Jim Miller, “Application-Specific Proxy

Servers as HTTP Stream Transducers,” Fourth International World Wide Web Conference, November

1995.

[CFMB98] Yatin Chawathe, Steve Fink, Steven McCanne, and Eric A. Brewer. A proxy architecture for

reliable multicast in heterogeneous environments. Proc. IFIP Middleware 98, Lake District, UK, Sept.

1998.

 28

[FBA96] Armando Fox, Steven D. Gribble, Eric A. Brewer and Elan Amir. Adapting to Network and Client

Variability via On-Demand Dynamic Distillation. Proc. Seventh Intl. Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS-VII), Cambridge, MA, Oct. 1996.

[FGCB98] Armando Fox, Steven D. Gribble, Yatin Chawathe and Eric A. Brewer. Adapting to Network and

Client Variation Using Active Proxies: Lessons and Perspectives. IEEE Personal Communications (invited

submission), August 1998.

[FGC+97] Armando Fox, Steve D. Gribble, Yatin Chawathe, Eric A. Brewer, and Paul Gauthier. Cluster-based

scalable network services. Proceedings of the Sixteenth Intl. Symposium on Operating Systems Principles

(SOSP-16), St.-Malo, France, October 1997.

[FGG+98] Armando Fox, Ian Goldberg, Steven D. Gribble, David C. Lee, Anthony Polito, and Eric A. Brewer.

Experience With Top Gun Wingman, A Proxy-Based Graphical Web Browser for the USR PalmPilot. Proc.

IFIP Middleware 98, Lake District, UK, Sept. 1998.

[JK99] Zhimei Jiang and Leonard Kleinrock, “An Adaptive Pre-fetching Scheme,” to appear in Journal of Selected

Areas in Communications, 1999.

[KS95] Puneet Kumar and M. Satyanarayanan, “Flexible and Safe Resolution of File Conflicts,” Proceedings of the

1995 Winter Usenix Conference, January 1995.

[KS92] Jay Kistler and M. Satyanarayanan, “Disconnected Operation in the Coda File System,” ACM Transactions

on Computers, Vol. 10, No. 1, Feb. 1992.

[KS93] P. Kumar and M. Satyanarayanan, “Supporting Application-Specific Resolution in an Optimistically

Replicated File System,” Proceedings of the Fourth Workshop on Workstation Operating Systems, Napa,

CA, October 1993

[LHKR96] Mika Liljeberg, Heikki Helin, Markku Kojo, Kimmo Raatikainen, “Enhanced Services for World-

Wide Web in Mobile WAN Environment,” University of Helsinki Computer Science Department Techni-

cal Report C-1996-28.

[MCS98] A. Mallet, J.D. Chung, J. M. Smith, “Operating System Support for Protocol Boosters,” HIPPARCH

Workshop, June 1997.

 29

[MES95] Lily Mummert, Maria Ebling, M. Satyanarayanan, “Exploiting Weak Connectivity for Mobile File

Access,” Symposium on Operating System Principles, December 1995.

[Met94] Metricom Inc. Ricochet wireless modem service. http://www.ricochet.net

[NSN+97] Brian Noble, M. Satyanarayanan, D. Narayanan, James Tilton, Jason Flinn, Kevin Walker, “Agile

Application-Aware Adaptation for Mobility,” Symposium on Operating System Principles, Nov. 1997.

[RHR+97] Peter Reiher, John Heidemann, David Ratner, Gregory Skinner, and Gerald Popek, “Resolving File

Conflicts in the Ficus File System,” Proceedings of the 1994 Summer Usenix Conference, June 1994.

[SB98] Pradeep Sudame, B. R. Badrinath, “Transformer Tunnels: A Framework for Providing Route-Specific

Adaptations,” Usenix Annual Technical Conference, June 1998.

[SKK+90] M. Satyanarayanan, James Kistler, Puneet Kumar, Maria Okasaki, Ellen Siegel, and David Steere,

“Coda: A Highly Available File System for a Distributed Workstation Environment,” IEEE Transactions

on Computers, Vol. 39, No. 4, April 1990.

[SK97] Mark Stemm and Randy H. Katz. Vertical handoffs in wireless overlay networks. ACM Mobile

Networking (MONET) Special Issue on Mobile Networking in the Internet, Fall 1997.

[TK96] B. Tung and Leonard Kleinrock, “Using Finite State Automata to Produce Self-Optimization and Self

Control,” IEEE Transactions on Parallel and Distributed Systems, Vol. 7, No. 4, April 1996.

[TW96] David Tennenhouse and David Wetherall, “Towards an Active Network Architecture,” Computer

Communications Review, Vol. 26, No. 2, April 1996.

[WAP97] Wireless Applications Forum home page and standards documents. http://www.wapforum.org

[YRP99] Mark Yarvis, Peter Reiher, and Gerald Popek, “Conductor: A Framework for Distributed

Adaptation,” Proc. Seventh Workshop on Hot Topics in Operating Systems (HotOS-VII), March 1999.

Biographies
B. Badrinath received his Ph.D from University of Massachusetts Amherst in 1989. He has since been

on the faculty in the Computer Science Department at Rutgers University, where he is an Associate

Professor. His research interests are in mobile and wireless computing, particularly network design

 30

issues for supporting large scale mobile and wireless nodes(e.g., sensor networks, smart spaces,

dataspaces).

Armando Fox joined the Stanford faculty as an Assistant Professor in January 1999, after getting his

Ph.D. from UC Berkeley as a researcher in the Daedalus wireless and mobile computing project. His

research interests include the design of robust Internet-scale software infrastructure, particularly as it

relates to the support of mobile and ubiquitous computing, and user interface issues related to mobile

and ubiquitous computing. In previous lives, Armando received a BSEE from M.I.T. and an MSEE

from the University of Illinois, and worked as a CPU architect at Intel Corp. He can be reached at

fox@cs.stanford.edu. He is also an ACM member and a founder of ProxiNet, Inc. (now a division of

Puma Technology), which is commercializing thin client mobile computing technology developed at UC

Berkeley.

Leonard Kleinrock is known as the inventor of Internet technology, having created the basic principles

of packet switching (the technology underpinning the Internet) while a graduate student at MIT. Dr.

Kleinrock received his Ph.D. from MIT in 1963 and has served as a professor of computer science at the

University of California, Los Angeles, since then. He received his BEE degree from CCNY in 1957

(and an Honorary Doctor of Science from CCNY in 1997). He is a co-founder of Linkabit, and also

founder and chairman of Nomadix, Inc. and of Technology Transfer Institute, both hi-tech firms located

in Santa Monica, California. Dr. Kleinrock has published more than 200 papers and authored six books

on a wide array of subjects including packet switching networks, packet radio networks, local area

networks, broadband networks and gigabit networks.

Dr. Kleinrock is a member of the National Academy of Engineering, an IEEE fellow and a founding

member of the Computer Science and Telecommunications Board of the National Research Council.

Among his many honors, he is the recipient of the CCNY Townsend Harris Medal, the CCNY Electrical

 31

Engineering Award, the Marconi Award, the L.M. Ericsson Prize, the UCLA Outstanding Teacher

Award, the Lanchester Prize, the ACM SIGCOMM Award, the Sigma Xi Monie Ferst Award, and the

IEEE Harry Goode Award.

Gerald Popek received his Ph.D. from Harvard University in 1973. He has been a member of the

faculty of the UCLA Computer Science Department since 1973. He founded the Locus Computing

Corporation in 1983, and served as first as its President and CEO, later as its Chairman, until it was

acquired by Platinum technologies, inc. in 1995. He served as Platinum’s CTO until 1999. He is now

CTO of Carsdirect.com. Dr. Popek’s research has concerned security, operating systems, distributed

systems, and databases. He is a member of the ACM.

Peter Reiher received his Ph.D. from UCLA in 1987. He worked at JPL for five years as principal

designer of the Time Warp Operating System. He returned to UCLA in 1993, where he is an Adjunct

Associate Professor. Dr. Reiher’s research interests include distributed systems, adaptive technologies

for networking, security, data replication, and parallel discrete event simulation. He is a member of the

ACM.

M. Satyanarayanan is an experimental computer scientist who has pioneered research in the field of

mobile information access. An outcome of this work is the Coda File System, which provides

application-transparent support for disconnected and weakly-connected operation. Key ideas from Coda

have been incorporated by Microsoft into a forthcoming release of the Windows NT file system. More

recently, Satyanarayanan and his research group have been working on application-aware adaptation, a

more general approach to mobile information access. This concept is being explored in the context of a

new platform, Odyssey. Prior to his work on Coda and Odyssey, Satyanarayanan was a principal

architect and implementer of the Andrew File System, a location-transparent distributed Unix file

 32

system that addressed issues of scale and security. Later versions of this system have been commercial-

ized and incorporated into the Open Software Foundation's DCE offering.

Satyanarayanan is the Carnegie Group Professor of Computer Science at Carnegie Mellon University.

He received the PhD in Computer Science from Carnegie Mellon, after Bachelor's and Master's degrees

from the Indian Institute of Technology, Madras. He has been a consultant and advisor to many

industrial and governmental organizations.

