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Abstract 

Modern networks are extremely complex, varying both statically and dynamically.  This complexity and 

dynamism are greatly increased when the network contains mobile elements.  A number of researchers 

have proposed solutions to these problems based on dynamic adaptation to changing network conditions 

and application requirements.  This paper summarizes the results of several such projects and extracts 

several important general lessons learned about adapting data flows over difficult network conditions.  

These lessons are then formulated into a  conceptual framework that demonstrates how a few simple and 

powerful ideas can describe a wide variety of different software adaptation systems.  This paper 

describes an Adaptation Framework in the context of the several successful adaptation systems and 

suggests how the framework can help researchers think about the problems of adaptivity in networks.  

1.  Introduction 

Computer networks are becoming increasingly complex and variable, with mobility exacerbating the 

problem dramatically.  Several researchers in the field of networking and distributed systems recognized 

this problem in the recent past, and started designing solutions to the problems of complex variability.  

Many of these researchers addressed the problem through different forms of software-supported 

adaptivity.  Recently, systems embodying their ideas have been built, tested, validated, and, in some 

cases, deployed for production use, demonstrating the real power of software-supported adaptivity. 

The authors examined the characteristics of the adaptive software systems they built and discovered that 

although the systems were independently designed and built, they shared three kinds of commonality: 
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1. The systems shared certain fundamental characteristics that could be described in fairly sim-

ple architectural terms. 

2. The designers made similar design choices across the different systems.  

3. Similar lessons were learned in the design and implementation of the different systems. 

The framework presented in this paper captures these commonalities, clarifies several issues surround-

ing the structure and design of software that adapts to difficult network conditions, and suggests key 

issues that require further investigation in this field.  The framework can also help other researchers 

characterize their own adaptive software and understand how it relates to other systems. 

In section 2, we discuss in more detail the characteristics of modern networks that motivate the need for 

adaptivity, especially in the mobile computing arena.  Section 3 briefly describes some of the systems 

that provided inspiration for the framework.  Section 4 describes the framework.  Section 5 presents how 

each of the sample systems from section 3 fits into the framework.  Section 6 suggests ways in which the 

framework may help other researchers think about the structure of their own adaptive systems.  Section 

7 concludes with open issues that the framework exposes and suggests areas of future work. 

2.  The Need for Network Adaptation 

Many of the characteristics of modern networks vary dramatically.  Bandwidths currently provided by 

networking hardware in daily use range from a few tens of kilobits per second up to thousands of 

megabits per second.  Similarly, bit error rates of commonly used network devices span orders of 

magnitude. Latencies can range from nanoseconds to large fractions of a second.  Networks that contain 

mobile elements tend to experience a wide range of these characteristics, often with rapid changes. 

The scale of today’s and tomorrow’s networks adds great complexity. High growth rates are expected 

for the future, even leaving aside the additional scaling potential of “smart spaces”, where many billions 
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of tiny embedded devices worldwide will have some networking capabilities.  Such scale makes any 

form of static planning or optimization of network operations impossible. 

We also demand far more of our networks than ever before.  Not only is the total volume of traffic 

increasing at an alarming rate, but also new applications put new kinds of demands on the network.  

Web browsing, video conferencing, and Internet telephony have very different network requirements 

than such old Internet staple applications like electronic mail and file transfer.  

Mobility greatly exacerbates the problem.  Many of the computers being sold today are either portables 

or handheld devices.  In the smart spaces world of the future envisioned by some, extremely small 

embedded devices will travel everywhere, be embedded in everything from walls to automobiles to 

shoes, all the while communicating, processing, controlling, actuating, capturing data, etc.  A 

bewildering array of wireless networks is being deployed to serve such mobile devices.  

The mobile environment also introduces another complication:  heterogeneity in the communicating 

devices.  Cell phones, personal digital assistants, palmtop computers, digital pagers, digital cameras and 

portable computers all have different capabilities and different requirements.  Part of the difficulty of 

adaptation in the mobile environment is not just to deliver data over challenging network conditions, but 

to deliver it in formats suitable for the devices that need it.  

Other issues, such as security and economic questions, also complicate the problem.  Generally, adding 

the need for security to any computing question complicates it.  The existing networking infrastructure 

that we have inherited was not designed with commercial use in mind; as a result, performing efficient, 

safe business transactions over that network infrastructure is challenging. 

Moreover, the existing network protocols that have enabled the Internet revolution are not perfectly 

suited to the environment they themselves have created.  TCP, for example, does not work well on noisy 
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links (e.g., many wireless links), and often behaves poorly over satellite links due to long latencies.  

Researchers have changed some protocols to handle such problems, but our understanding of networks 

is insufficient to allow us to design protocols that behave well in the face of all probable network 

conditions.   Even if we could develop such protocols, we would face the challenge of converting the 

enormous installed base of today’s network infrastructure.   The Internet is distributed, decentralized and 

vast, and the simple solution of complete replacement of that existing infrastructure is daunting. 

But it is important to realize that even if we could successfully deploy new protocols quickly, problems 

would still remain.  The real goal of adaptive networking is to provide good end-to-end service, where 

the end points are located in applications.  Without considering the needs of applications and their users, 

no adaptive solution at the network level alone can solve the entire problem.  

These trends suggest that we must deal with larger, more variable, more complex, rapidly growing 

networks that must meet ever increasing demands, yet rely largely on existing networks and protocols.  

One general class of solutions to solving this problem is to allow various forms of adaptation of network 

traffic.  Such solutions allow hardware or software to alter the protocols or the data content being 

transmitted to provide a better quality of service to users.   

Data flows over networks can be usefully adapted in many ways:  

• The underlying protocol can be altered to handle difficult conditions.  The Berkeley snoop protocol 

improves TCP over high error rate links [BSAK95]; an adaptation mechanism can slip the snoop 

protocol into place when such links are established [AHKO97]. 

• The data can be altered in a lossless way.  Various systems allow data compression or encryption 

across links with poor connectivity, without any application involvement. 
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• Lossy adaptations can be used to obtain better compression of data over limited links by dropping  

inessential portions of the information, or sending a lower-fidelity version. TranSend improved 

performance by an order of magnitude or better using lossy compression [FGCB98]. 

• Data can be automatically converted to formats better suited to the end systems or the intermediate 

networks.  The Top Gun Wingman browser [FGG+98] converts Web images into 2-bit grayscale 

bitmap displays before sending them to Palm Pilots.  Mowgli [LHKR96] converts GIF images to 

more compact JPEG before sending them over wireless links.  Although adaptation to client hetero-

geneity is an important area in which extensive work has been done (see [FGCB98] for an overview 

and pointers to related work), in this paper we focus on adapting to network variability, remarking 

that the architecture we describe has been successfully used to address client adaptation as well. 

Adaptive solutions to network problems embrace many interesting variations: the various proxies built 

at Berkeley [FGCB98], the Odyssey system [NSN+97], transformer tunnels [SB98], active networks 

[TW96], and intelligent agents [TK96].  While these systems have some very significant differences, all 

offer methods of changing the contents of the transmitted data or the methods used to send that data.  All 

adapt to changing conditions specific to the data transmission requested, or to prevailing network 

conditions, or to needs of the users.  This body of research has many successes, but none claim to solve 

the complete problem or even to suggest a framework for thinking about the problem and its solution.  

This paper’s goal is to propose such a framework. 

3.  Some Characteristic Adaptive Systems 

Although at first glance there may appear to be little commonality across the wide variety of approaches 

to network adaptation, significant commonality is revealed by closer examination of the decisions made 

by independent researchers taking different approaches to the problem.  We present below several 

independently designed, operational systems developed by one or more of the authors. While the chosen 
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systems certainly do not cover all work done in the field (or even all work in the field by the authors), 

they illustrate the wide variety of possibilities in adaptive network software solutions.  Each system’s 

designers started from the assumption that adaptivity was required to solve some set of problems, but 

otherwise the design assumptions varied radically.  Examples of differences include the following:  

• Application-transparent vs. application-aware adaptation: is the application informed that adaptation 

is occurring and perhaps expected to provide an application-level response (as in Odyssey), or does 

the system attempt to completely shield the application from this fact (as in Conductor)? 

• General vs. application-specific adaptation: does the system provide general machinery to support a 

collection of unrelated applications (as in disconnected file systems such as Coda), or does it support 

a specific application or narrowly-defined class of applications (as is the case for TranSend)? 

• Does the adaptation machinery reside in the client, in the server, in one or more intermediate 

proxies, or all of these? 

Despite such differing goals and assumptions, some key common ideas and themes emerged.  We now 

examine these example systems, which on the surface appear extremely different.  Closer examination 

of their conceptual architectures, however, reveals strong similarities, which we tie together with the 

framework we describe in Section 4. 

3.1  UC Berkeley TranSend 

UC Berkeley’s TranSend Web accelerator proxy [FBA96] was one of the earliest projects to explore 

adaptation proxies aggressively.  TranSend intercepts HTTP requests from standard Web clients and 

applies datatype-specific lossy compression when possible; for example, images can be scaled down or 

downsampled in the frequency domain, long HTML pages can be broken up into a series of short pages, 
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etc.  TranSend’s primary goal was to provide network adaptation for users of slow links, such as UC 

Berkeley’s modems or the Metricom Ricochet service [Met94], which is popular in the Bay Area. 

TranSend supports a wireless vertical handoff mechanism [SK97].  When a client equipped with 

multiple wireless interfaces switches between wireless networks, the client-side vertical handoff 

software (which is completely independent of TranSend) generates a notification packet containing 

some essential characteristics (e.g., estimated expected throughput) of the new network.  This packet 

would be sent to a special UDP port on TranSend where the notification would be processed and stored 

in a per-client profile.   TranSend would then process future requests from that client in accordance with 

the new network type; for example, very aggressive image downsampling was performed for clients 

connecting over Ricochet with an expected throughput of 15-25 Kb/s, whereas compression was much 

less aggressive (and in some cases disabled) for WaveLAN clients connecting at about 1 Mb/s. 

Because HTTP is a “stackable” protocol (i.e. it is possible to have several HTTP “hops” in a request 

chain), TranSend-based adaptations are naturally composable, allowing a multilevel system with some 

“baseline” compression performed far upstream, and additional compression performed near the clients.  

TranSend evolved into a general system for deploying scalable, fault-tolerant adaptive applications 

[FGCB98].  Top Gun Wingman [FGG+98], for example, allows users of thin clients such as the USR 

PalmPilot handheld device to browse the Web.  Although similar in spirit to TranSend, Wingman 

provides an additional service, a network adapter.  TranSend uses HTTP to communicate with clients 

and servers, but the PalmPilot’s modest capabilities suggested a simpler protocol.  A simple datagram-

based client-to-adapter protocol that also encapsulates security and encryption was crafted for Wingman.  

Wingman’s proxy-side adapter translates between this protocol and HTTP, giving Wingman the ability 

to access existing Web servers.  When Wingman was evolved into a PalmPilot implementation of the 

shared whiteboard [CFMB98], the network adapter was augmented to tunnel multicast to the PalmPilot 
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over a unicast TCP connection, to compensate for the PalmPilot’s inability to handle multicast directly; 

this is another example of network adaptation. 

3.2  CMU Odyssey 

Odyssey is a system built at Carnegie Mellon University to support challenging network applications on 

portable computers [NSN+97].  Odyssey particularly focuses on resource management for multiple 

applications running on the same machine.  Odyssey was designed primarily to run in wireless 

environments characterized by changing and frequently limited bandwidth, but the model is sufficiently 

general to handle many other kinds of challenging resource management issues, such as battery power or 

cache space.  The goal of the system is to provide all applications on the portable machine with the best 

quality of service consistent with available resources and the needs of other applications. 

Odyssey is an application-aware approach to adaptation intended primarily to assist client/server 

interactions.  The Odyssey system consists of a viceroy, an operating system entity in charge of 

managing the limited resources for multiple processes; a set of data type-specific wardens that handle 

the intercommunications between clients and servers; and applications that negotiate with Odyssey to 

receive the best level of service available.  Applications request the resources they need from Odyssey, 

specifying a window of tolerance required to operate in a desired manner.  If resources within that 

window are currently available, the request is granted and the client application is connected to its server 

through the appropriate warden for the data type to be transmitted.  Wardens can handle issues like 

caching or pre-fetching in manners specific to their data type to make best use of the available resource. 

If resources within the requested window are not available, then the application is notified and can 

request a lower window of tolerance and corresponding level of service.  As conditions change and 

previously satisfied requests can no longer be met (or, more happily, conditions improve dramatically), 
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the viceroy uses upcalls registered by the applications to notify them that they must operate in a different 

window of tolerance, possibly causing them to alter their behavior. 

3.3 UCLA Conductor 

The UCLA Conductor system allows deployment of cooperating adaptive agents at specially enabled 

nodes throughout a network [YRP99].  Conductor is an application-transparent adaptation mechanism.  

Applications can benefit from Conductor without being recoded or explicitly requesting its services.  

Instead, the underlying system is configured to indicate what kinds of data flows Conductor is capable 

of assisting and the Conductor system automatically traps and adapts those data flows. 

Conductor also handles issues of composing adaptations in support of a single flow at multiple nodes.  

Conductor determines the characteristics of the data path from source to destination and determines if 

the path will meet the needs of the applications using it.  If not, Conductor will automatically deploy 

adapters at one or several of the available nodes along the path to adapt the data flow to network 

conditions, allowing better application-visible network behavior.  Conductor plans the cooperative 

behavior of the agents and handles problems of transient or long-term failure of particular adapter nodes. 

Conductor is designed to handle general-purpose adaptations, including both lossy and lossless 

adaptations.  Combining lossy adaptations and reliability is especially challenging, since a lossy adapter 

may drop part of the data or may transform several data packets into fewer packets.  If an adapter or its 

node fails, some of the adapted packets could be delivered while others were not.  Without the lossy 

adapter’s state to determine which original packets were dropped or coalesced, the system may find it 

difficult to resume transmission without either duplicating already received information or failing to 

deliver required information.  Unaware applications are generally unprepared for either problem, so 

Conductor must hide these problems from such applications.  Conductor attaches numbers to pieces of 

semantic content that do not vary when adapted.  For example, if every other packet is dropped, the 
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undropped packets are renumbered to include the dropped packets.  The system is thus able to determine 

which information has and has not been delivered despite failures. 

3.4  UCLA Smiley 

Smiley is an intelligent agent real-time program developed at UCLA to augment Web browsers [JK99].   

It has two components: (i) a dynamic Graphical User Interface that informs users of the nature of the 

links on a Web page, and (ii) a transparent agent that prefetches carefully selected links.  The GUI  

provides users a measure of the quality of connectivity available between themselves and the servers 

they contact to obtain Web pages [JK99], and of the nature of the data residing behind that link.  It was 

designed to handle both the kinds of limited links common in mobile computing and general connec-

tivity and bandwidth problems in the overall network. Smiley’s GUI provides user feedback, in the form 

of augmentations to the links shown on a Web page, allowing the user to predict the likely effect of 

clicking on a particular link.  This feature allows a user to avoid requesting a page that is unavailable or 

will take a long time to retrieve.   Smiley prefetches web pages intelligently to allow users to browse 

more effectively over limited and variable links.  A prefetch threshold algorithm is used to decide when 

to prefetch a web page the user hasn’t yet asked for.  Smiley includes models that consider different 

users associated with different time and bandwidth costs, trying to minimize the average cost for each 

request in the entire system.  

3.5 CMU Coda 

Coda is an optimistic file replication system developed for the mobile computing environment that uses 

client/server optimistic replication to maintain replicas of files required by disconnected or poorly 

connected clients [KS92].  Optimistic replication permits any replica of a file to be updated freely (as 

allowed by normal file system access permissions), without regard to the status of other replicas.  

Optimistic replication provides great performance and availability advantages over other replication 
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alternatives, at the cost of occasionally permitting concurrent updates.  Experience with and measure-

ments of Coda [KS92] and other optimistic replication systems [RHR+94] shows that concurrent 

updates are uncommon in practice, and many of them can be resolved without human intervention. 

Coda’s server copy is kept on a well-connected machine that the portable computers contact when 

possible.  Updates performed by the portable computer during disconnection are saved in a log, which is 

replayed to the server when possible.  The server detects any concurrent updates and rejects them, 

requiring the client to use automated conflict resolution mechanisms to resolve any problems resulting 

from such concurrency [KS93, KS95].  The client portable also requests new updates from the server. 

Adapting to network conditions was not the primary goal of Coda, but experience with its operation in 

the mobile environment caused the Coda designers to extend it to do so [MES95].  Coda performs 

trickle reintegration when only limited bandwidth is available for communicating updates to the server.  

This method of reintegrating updates from the mobile computer to the server allows effective, adaptive 

use of the available bandwidth between the two machines. 

3.6 Rutgers Environment Aware API 

Application adaptivity implies that applications must be structured to receive notifications about any 

important changes in the environmental state and to react appropriately.  Since the network state is 

complex, the applications must interact with many environmental conditions, sources, and possible 

reactions.  The Rutgers Environment Aware API addresses this problem.  This API is based on a flexible 

mechanism for asynchronous event delivery. Environmental changes are modeled as asynchronous 

events that are delivered to mobile computing applications over an entity called an Event Channel 

[WEBA98]. This entity implements the event delivery mechanism. The events are organized as an 

extensible type hierarchy, and the architecture itself can be configured and extended. This extensibility 

enables support for a new condition to be easily incorporated into an existing system.  A novel feature of 
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the API is the ability to utilize event type information not only to filter out uninteresting events, but also 

to handle an event at an appropriate level of abstraction.  An application that chooses to be environmen-

tally aware creates a handler for that event type. The application specific response to the new situation is 

encoded in this handler and is invoked when the appropriate event is delivered. 

4.  A  Conceptual Framework for Network Adaptation: The Adaptation Framework  

Careful thought about these and other network adaptive systems reveals important common themes.  We 

now present a conceptual framework that encapsulates those themes. Each of the systems presented 

above maps well into this framework, despite their many different details. 

The framework had to display certain characteristics: 

• it should encompass all reasonable alternatives to major design questions 

• it should be as simple as possible (but, to quote Einstein, no simpler) 

• it should consider issues of incremental deployment of different technologies, interoperation with 

legacy systems, and other practical issues   

• it should make interoperation between different adaptation technologies easier 

• it should distill the extensive knowledge, experience, and real systems produced for adaptation  

• it should provide a starting point and common vocabulary for describing future work in the 

important area of adaptive architectures 

• it should not preclude future innovations that provide alternative approaches to adaptive networks 

Data flowing across an arbitrarily large and complex network of varying characteristics should be 

delivered to its destination in the best manner possible, given a variety of constraints.  Some of these 

constraints relate to physical and technological limitations, such as the speed of light or the capacity of a 
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link on the path.  Others relate to systems concerns, such as the need to share a link or the costs of 

providing reliable delivery.  Given the wide variety of possible conditions that could be present in the 

network, many different adaptations to the data flow could prove beneficial. 

The essence of the problem is illustrated in Figure 1.  A process on a source node sends data to a process 

on a destination node.  The data flows across various links and nodes in the network.  The thickness of 

the connecting lines is meant to suggest relative capabilities of the links involved in the data flow. 

S D

Source Destination  
Figure 1:  A data flow in a variable network 

To some extent, this figure is a simplification of the general problem.   It shows a simple data flow with 

a single source (S) and destination (D), and it does not illustrate problems such as delivery deadlines or 

security concerns, nor does it suggest the level of complexity possible in even a single network data 

flow.  But the figure captures the heart of the problem.  A stream of data flows from a source to a 

destination across a network, using links of varying capabilities.  At some or all points in the network, 

altering the data flow in various ways could lead to better overall results, from the point of view of the 

sender, the receiver, the administrator of the network, or the complete population of network users.  

Without some mechanism  to apply such adaptations, however, no improvements can be made. 

Figure 2 shows how the introduction of adapters alters the situation.  Now, the data can be altered in 

various ways, allowing for better results.  Adaptation Agencies (labeled AA in the figure) represent 

many different kinds of adaptation mechanisms, from adaptive protocols to heavyweight code executed 

on behalf of the data flow.  Note that all adaptive components in this diagram are optional, and that any 
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single AA can be replaced with multiple AA’s arranged in complex ways. The degenerate case where all 

are omitted is a simple client-server or peer system with no adaptivity support.   

AA AA AAAAS D

 
Figure 2:  Adapters assist the data flow 

Figure 3 shows how the Adaptation Framework fills in the details of Adaptation Agencies.  An AA 

consists of several parts: 

Figure 3:  An Adaptation Agency 

• The Event Manager (EM) monitors the AA’s environment.  The components of that environment are 

defined broadly, for generality, but are likely to include things like traffic and error conditions on 

network links, available CPU cycles on a local processor, or security threats that have been detected. 

The event manager can receive control messages that will alter the behavior of the AA.  These 

messages can originate from other AA’s, from local operating system services, or from applications. 

• The Resource Management and Monitor (RM) component handles resources under direct control of 

the AA.  If the AA has been allocated a certain percentage of a data link’s bandwidth, the RM 

determines how to best use that bandwidth to meet the needs of all data flows under its control. 
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• Each AA may contain zero or more Application Specific Adapters (ASA’s).  These modules are 

capable of performing some particular adaptation on a data stream.  Each ASA requires certain 

resources to perform its adaptation properly. 

An Adaptation Agency accepts data from some source and delivers possibly adapted data to some other 

destination.  The source may be one network link and the destination another network link, but source 

and destination might also be other AA’s.   If a particular AA is working directly with a network, 

however, it will have some knowledge of the specifics of that network, such as whether the network 

supports broadcast or not.  The AA can use this knowledge when performing adaptations. 
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The connection and interaction of AA components is also important.  (See figure 4.)   Generally, data 

comes into an AA and is delivered to one of its ASA’s (1), which decides whether to adapt the data.  If 

resources are required for an adaptation, the ASA requests them from the RM (2).  The RM can accept 

or reject such a request, based on what resources are available and its resource allocation algorithms. 

The RM obtains the availability information from the EM (3), which sends the RM updates whenever 

significant events occur. When the RM has decided on how to handle a request from an ASA, it informs 

the EM of the new resources that have been made available to the ASA (4).  The EM can then alter its 

Figure 4:  Data Flow Through an AA 
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view of local conditions, and can also deliver the response to the ASA (5).  The EM will also signal the 

ASA when other situations lead to changes in conditions relevant to ASA operations.   After adaptation, 

the ASA passes the adapted data into the network for delivery to the destination or the next ASA (6). 

AA’s can be organized hierarchically, with one AA controlling a group of other AA’s, allowing the 

framework to specify that one entity control a shared resource for several other entities.  Figure 5 

demonstrates this concept.  Two disjoint data flows pass through a single physical entity, which could be 

a gateway machine, a network link, or an entire local area network.  The data flows must in some way 

share the physical entity’s resources.  The adaptation framework handles this issue by permitting a 

higher level AA to assume control of all of the physical entity’s shared resource.  It then communicates 

with the Event Managers of the AA’s actually supporting the two data flows to tell them how much of 

the shared resource is available to them.  These lower level AA’s in turn communicate internally with 

the ASA modules chosen to use for adaptation of each data flow.  The hierarchy can continue to higher 

levels, if necessary, allowing one set of AA’s to handle data flows, a higher level set to mediate shared 

use of a switch or gateway, and an even higher level AA to coordinate overall network activity through 

its instructions to the middle level AA’s. 

EM RM

Physical Collocation boundary

EM RM EM RM

EM RM EM RM EM RM

EM RM

 
Figure 5: Adaptation Agencies using a shared resource 
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5.  Mapping Real Systems Into the Adaptation Framework 

The Adaptation Framework is intended to encompass a wide variety of adaptation mechanisms.  Here  

we describe how the systems described in section 3 can be fit into this framework.  For each system, the 

accompanying diagram shows as shaded the sections of a single ASA (or, in some cases, multiple 

ASA’s) that are provided by that system. 

5.1  TranSend 

TranSend can be thought of as a complete Adaptation Agency (AA) that initially ran on a single 

workstation but was later extended to run on a cluster.   The entire cluster can be regarded as a single 

AA that serves extremely large communities of users [FGC+97].  Within the AA, TranSend contains a 

separate ASA for each MIME type (GIF, JPEG, HTML, etc.)  Incoming data is either passed to the 

appropriate ASA by type, or passed directly through the AA to the client if no appropriate ASA exists.  

The ASA then performs datatype-specific lossy compression before forwarding the data. 

Figure 6:  Mapping TranSend to the Adaptation Framework 

Transend’s vertical handoff mechanism worked with a simple Event Manager (EM) to determine when 

handoff was necessary.  Because TranSend was designed under the assumption that it would have use of 
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all the workstation’s resources, no RM was designed into it.  However, external RM schemes such as 

SRI’s Resource Management framework should be able to interoperate with TranSend. 

5.2  Odyssey 

Odyssey fits well into the adaptation framework.  Odyssey on a portable node is a single AA.  The 

viceroy is a combination of resource manager and event manager.  The wardens are ASA’s specific to 

individual data types.  One Odyssey AA can host several warden ASA’s. 

One interesting aspect of Odyssey with regard to the adaptation framework is that much of the 

adaptation in this model is actually done by the applications, which interact with Odyssey.  For example, 

Odyssey itself doesn’t decide that color video frames should be converted to black-and-white, but rather 

instructs the application that some action is required.  The application itself decides how adaptation 

should occur, and typically instructs its server to make the adjustment.  Alternately, the application can 

request even higher-level control, such as requesting user advice on the kinds of adaptations that should 

be applied when conditions change.  This aspect highlights the architecture’s inclusion of the possibility 

of control traffic between applications and AA’s. 
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Figure 7: Mapping Odyssey to the Adaptation Framework 
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5.3  Conductor 

Conductor can be regarded as a set of complete AA’s that cooperate to plan and regulate the overall 

behavior of a connection.  Each Conductor node hosts an AA that will allow adaptation of multiple 

flows through that node.  The Conductor AA contains a RM that allocates the resources the node makes 

available to Conductor between the different flows the local Conductor AA controls.  It has an EM that 

captures new data transmissions coming in or originating at the node, monitors the progress of data 

flows, and watches for control information sent by other Conductor AA’s.  Multiple ASA’s can be run at 

a given Conductor node, either composed for the benefit of a single data flow, or separate for the benefit 

of multiple independent data flows.  The Conductor architecture also permits independent data flows to 

share an ASA, such as a caching or prefetching adapter. 

Conductor sends information between its AA’s to assist in planning the deployment of agents and to 

watch for failures.  This information is processed in a distributed fashion.  Essentially, the AA’s 

cooperate to create a plan at the start of a data flow.  This plan indicates which ASA’s should be located 

at given nodes, and may suggest how each ASA should behave.  If connections fail, the nodes involved 

in a flow on either side of the failure can replan to handle the failure.  They can choose to shut down the 

flow, re-route the flow (requiring, in general, a new plan and new ASA’s), or perform some local actions 

in anticipation that the failure will be fixed shortly.  An example of the latter would be prefetching data 

from the source while waiting for a transient connection to reappear. 

 

Figure 8: Mapping Conductor to the Adaptation Framework 
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5.4  Smiley 

Smiley can be regarded as a special purpose AA that resides on a mobile node, supporting a single 

adaptation.  It contains an RM that worries about the available link bandwidth, an EM that sends out 

probes to the network to determine connectivity and latency information, and prefetching and page 

rewriting ASA’s.  Smiley is an example of an AA that maps tightly to a particular application. 

Figure 9:  Mapping Smiley to the Adaptation Framework 
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Figure 10:  Mapping Coda to the Adaptation Framework 

5.6 The Rutgers Environment Aware API 

The monitoring and delivery of events over the event channel in the Rutgers approach is an example of 

the EM in the architecture. The EM monitors the environment and also delivers events of interest 

according to a system-defined policy. The event handler also provides a framework for implementing an 

ASA.  The application can install separate ASA’s for each interesting event type. When the EM delivers 

a notification, the appropriate ASA is invoked. The ASA responds to the new situation appropriately for 

its application.  For example, when a new network is detected, the characteristics of the network such as 

expected bandwidth are encapsulated in the event. The ASA can use this information in its response by 

changing the transmission from rich data to summary data and vice versa.  
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5.7  Commercial Systems 

The research projects discussed in this article have already influenced commercial efforts.  The network 

adaptation ideas pioneered in TranSend have appeared in various commercial products including Intel 

QuickWeb.  The more aggressive adaptation pioneered in the Top Gun Wingman handheld Web 

browser has been commercialized by ProxiNet, Inc. (now a division of Puma Technology).  Emerging 

mobile-computing standards from the W3C (World Wide Web consortium), including XML (Extensible 

Markup Language) and XHTML (Extensible HTML), incorporate mechanisms for “hinting” to 

intermediate Adaptation Agents to help them adapt content delivery to a range of networks and devices.   

The WAP (Wireless Application Protocol) suite is a stack of protocols designed specifically for 

delivering data and interactive services to the “smart cellular phone” class of mobile devices [WAP97].  

Although the application-level markup and scripting languages (WML and WMLscript) include features 

motivated by the limited capabilities of the intended client devices, the languages do not appear to 

provide any functionality that directly facilitates the application-level adaptation we motivate in this 

retrospective.   It will be interesting to see whether the evolution of the WAP protocols will follow the 

pattern of HTML, where application-level adaptation machinery has to be retrofitted after the protocols 

have become entrenched. 
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5.8  Summary 

The following table summarizes how each of the example systems fits the Adaptation Framework.   

System Description ASA EM RM Network 

TranSend Web accelera-
tion through 
datatype-
specific lossy 
compression 

MIME-type-
specific com-
pressors 

Wireless verti-
cal handoff noti-
fication affects 
compression 
aggressiveness 

N/A Compos-
able/stackable us-
ing HTTP 

Odyssey Application-
aware adaptation
by multiple ap-
plications using 
diverse data 
types  

Wardens (de-
vice driver-like 
OS extensions) 

Log of passive 
bandwidth ob-
servations 

Viceroy Runs on arbitrary 
networks.  API 
expressive enough 
to handle re-
sources such as 
power and cache 
space. 

Conductor Combines adap-
tations across a 
network for a 
data flow 

Supports arbi-
trary adapta-
tions 

Monitors net-
work conditions 
and notifies RM 
of changes. 

Handles 
planning 
and re-
planning of 
adapter de-
ployment 

Uses TCP from 
point-to-point, 
provides end-to-
end reliability it-
self. 

Smiley Web prefetching 
matched to net-
work conditions 

Prefetching 
and web page 
rewriting. 

Probes remote 
Web servers to 
determine cur-
rent network 
conditions 

Handles lo-
cal link and 
cache 

Runs on arbitrary 
networks 

Coda Trickle re-
integration 
matches log re-
play to channel 
characteristics 

Decides what 
and how much 
to send and 
keeps track of 
incomplete 
transmissions 

Observes avail-
able link band-
width to server 

N/A Specifics other 
than bandwidth 
and latency are 
transparent to 
Coda 

Environment 
Aware API 

Management of 
environmental 
change and ap-
plication level 
reaction 

Event handler 
which encodes 
the response of 
the application 

Framework for 
monitoring the 
status if the en-
vironment and 
delivering the 
induced changes
to applications 

N/A Not specific to 
network attributes. 
Supports other 
considerations 
such as power.  
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6.  The Adaptation Framework and the Structure of Adaptive Applications 

Our framework distinguishes the functionality of specific components of an adaptive application, and we 

have argued that this decomposition captures a broad class of adaptive applications.  This decomposition 

also provides the ability to decouple the various adaptation-related entities from each other.  Certainly in 

some cases tight coupling between entities can lead to a more efficient implementation; for example, 

responding to an event by invoking a registered upcall is fast and efficient and may not even cross an 

address-space protection boundary.  However, in cases where loose coupling provides acceptable 

performance and sufficiently small overhead, it offers some important benefits:   

1. It allows applications to be designed to function in either adaptive or non-adaptive environments, 

depending on whether environmental monitoring information is available.  This simplifies appli-

cation development by avoiding the need for “hardwiring” the monitoring machinery directly 

into the application.   

2. It allows the components to be designed as separate autonomous subsystems that are loosely 

coupled and operate essentially independently.  For example, using multicast, an environment-

monitoring subsystem can be in a continuous-monitoring mode in which interested parties sub-

scribe to specific types of environment-change events and react to them, rather than using a 

tighter coupling (such as the registering of upcalls) to support dynamic adaptation.   

3. The third advantage derives directly from the first two: systems composed of autonomous, 

loosely-coupled modules are more robust, generally less susceptible to cascading failure (be-

cause of the inherent fault isolation afforded by module autonomy), easier to maintain, and often 

easier to deploy incrementally than their more tightly coupled counterparts. 

For example, some applications in our framework do not require the presence or functionality of the 

EM; they function correctly without it, but display better adaptive behavior when it is functioning.  The 
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TranSend application goes a step further by decoupling the mechanisms used for communication 

between the EM and the ASA’s: in TranSend, the EM is a separate process that multicasts network-

change events on a well-known multicast channel.  The EM can function without TranSend (it doesn’t 

matter that no one is listening to a multicast transmission) and vice versa (if no events are received, 

TranSend continues to function with its current settings).  Such techniques contributed to the “infrastruc-

ture-level” degree of robustness achieved in the scalable cluster-based server that hosted the second-

generation TranSend prototype [FGC+97].   The decoupling made possible by a careful implementation 

of our framework may be a worthwhile starting point for the design of future adaptive applications.  We 

consider it a strength of our framework that it accommodates both loosely-coupled and tightly-coupled 

implementations, as circumstances and needs may require. 

7.  Open Issues and Conclusions 

This framework is merely a starting point for thinking about the general characteristics of software that 

supports network adaptivity.  Many important issues are clarified, but not solved, by this framework.   

7.1 The Adaptation Framework and Active Networks 

Active Networks [TW96] defines a very general model for programming the network.  In its full 

generality, potentially every network packet can carry code, and every network entity (including routers 

and general computation nodes) can execute that code and maintain state.  In addition to network 

adaptation such as we have described, ANs attempt to address a wide range of other tasks involving 

computation in the network, such as packet filtering, encryption, and incremental protocol deployment. 

Currently, the exact definition and architecture of Active Networks are topics of research.  In many 

cases, however, ongoing Active Network projects are producing software that is likely to fit well into the 

framework.  As the research community defines the architectural components of an Active Network 

more precisely, we anticipate that architecture will map comfortably into the framework outlined here. 
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7.2 Interactions between adaptations at different levels. 

Adaptation can occur at multiple levels, as it does in the sample systems discussed.  Some adaptations 

relate to altering the behavior of an underlying protocol, some to altering the behavior of an operating 

system, some to altering the behavior of an application.  In some cases, different adaptations might be 

applied at different levels of the overall system.  How such adaptations would interact is far from clear. 

Similarly, the framework points out the possibilities of composing adaptations, even those at the same 

level.  Some systems, such as TranSend and Conductor, already support some forms of composition, but 

the framework points out many possible methods of composing adaptations.  However, the methods 

used to determine that composed adaptations produce the desired behavior, particularly when they are 

being deployed and composed automatically, are unknown. 

7.3 Breadth of applicability. 

While this framework more than adequately describes the systems developed by the authors, and other 

systems with which they are familiar, the model is new, and has followed the development of these 

adaptive systems rather than preceded them.   Whether the framework contains sufficient generality and 

features to properly describe all worthwhile adaptive software systems remains to be seen.  Further 

examination of the alternative methods being used throughout the research community and deeper 

thought may further refine the framework. 

The framework, as it stands, is not an architecture.  No APIs have been defined that describe how data 

and control information flows into and out of AAs and their components.  While the individual systems 

discussed above all map neatly into the framework, none of them could be seamlessly and effortlessly 

connected, as presumably they could be if they conformed to a single architecture.  Conversion of the 

framework into a true architecture would require tight specification of the APIs between its components 

and validation by re-writing several adaptive systems to conform to these specifications. 
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The OSI seven-layer reference model provides a useful analogy to our framework.  Like our model, the 

OSI reference model is not an architecture but a framework.  The OSI model proposed a tremendously 

useful way to think about networking protocols.  It allowed the community to discuss key issues and to 

define specific architectures.   It provided a decomposition and layered structure that accelerated 

implementation considerably.  Many systems violate the OSI model, but those very violations are all the 

more understandable and valuable precisely because we can place them in the context of a framework.  

We believe that the adaptation framework outlined here can serve a similar role in the increasingly 

important field of network adaptation. 

The framework outlined in this paper is primarily intended to distill the common lessons learned from 

several successful network adaptation systems.  The authors hope it will lead to more general discussion 

and study of the properties of network adaptation systems and the important features of such systems. 
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